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Background. The Society of Thoracic Surgeons (STS)
uses statistical models to create risk-adjusted perfor-
mance metrics for Adult Cardiac Surgery Database
(ACSD) participants. Because of temporal changes in
patient characteristics and outcomes, evolution of surgi-
cal practice, and additional risk factors available in recent
ACSD versions, completely new risk models have been
developed.

Methods. Using July 2011 to June 2014 ACSD data, risk
models were developed for operative mortality, stroke,
renal failure, prolonged ventilation, mediastinitis/deep
sternal wound infection, reoperation, major morbidity or
mortality composite, prolonged postoperative length of
stay, and short postoperative length of stay among
patients who underwent isolated coronary artery bypass
grafting surgery (n [ 439,092), aortic or mitral valve
surgery (n [ 150,150), or combined valve plus coronary
artery bypass grafting surgery (n [ 81,588). Separate
models were developed for each procedure and endpoint
except mediastinitis/deep sternal wound infection, which
was analyzed in a combined model because of its
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infrequency. A surgeon panel selected predictors by
assessing model performance and clinical face validity of
full and progressively more parsimonious models. The
ACSD data (July 2014 to December 2016) were used to
assess model calibration and to compare discrimination
with previous STS risk models.
Results. Calibration in the validation sample was

excellent for all models except mediastinitis/
deep sternal wound infection, which slightly under-
estimated risk and will be recalibrated in feedback
reports. The c-indices of new models exceeded
those of the last published STS models for all
populations and endpoints except stroke in valve
patients.
Conclusions. New STS ACSD risk models have

generally excellent calibration and discrimination and are
well suited for risk adjustment of STS performance
metrics.
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Abbreviations and Acronyms

ACSD = Adult Cardiac Surgery Database
AVR = aortic valve replacement
BMI = body mass index
BSA = body surface area
CABG = coronary artery bypass grafting

surgery
DSWI = deep sternal wound infection/

mediastinitis
MVR = mitral valve replacement
MVr = mitral valve repair
PLOS = postoperative length of stay
STS = The Society of Thoracic Surgeons
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isk models are used for multiple purposes in adult
Rcardiac surgery including quality measurement,
clinical practice improvement, voluntary public reporting,
and research. These risk models are used by The Society
of Thoracic Surgeons (STS) to benchmark participant
outcomes in comparison with national aggregate data in
STS feedback reports; to enable case-mix adjustment in
the calculation of participant and individual surgeon
composite performance measures; and to support the STS
voluntary public reporting initiative. To maximize the
validity of its performance metrics, the STS has devel-
oped a portfolio of risk models that are customized for
specific procedure populations and that adjust for
numerous patient preoperative factors.

The 2008 STS adult cardiac surgery risk models were
based on data from 2002 to 2006 [1–3]. Since the publi-
cation of these models, a recalibration factor has been
applied to each subsequent harvest period so that the
ratio of observed to expected outcomes would equal 1. In
the decade since publication of the 2008 risk models,
successive Adult Cardiac Surgery Database (ACSD) ver-
sions have been introduced to account for temporal
changes in procedures, patient populations, surgical
practices, outcomes, and the identification of new risk
factors. Using the most recent data version available at
the time of this analysis, we sought to develop a
completely new set of STS adult cardiac surgery risk
models.

Part 1 of this report [4] provides a detailed background
and conceptual framework for the risk model update and
provides a high-level methodologic summary of the up-
date process. In Part 2, we provide the detailed statistical
methods and results.
Patients and Methods

Endpoints
Risk models were developed for the following nine end-
points chosen for consistency with prior STS risk models
and current performance metrics (eg, STS composite
scores): (1) operative mortality, defined in all STS data-
bases as all deaths, regardless of cause, occurring during
the hospitalization in which the operation was performed
even if after 30 days (includes patients transferred to
other acute care facilities), and all deaths, regardless of
cause, occurring after discharge from the hospital but
before the end of the 30th postoperative day; (2) stroke—
an acute episode of focal or global neurologic dysfunction
caused by brain, spinal cord, or retinal vascular injury as
a result of hemorrhage or infarction in which the neuro-
logic dysfunction lasts for more than 24 hours; (3) renal
failure—a new requirement for dialysis or meeting the
RIFLE (Risk, Injury, Failure, Loss of kidney function, and
End-stage kidney disease) criteria based on creatinine
levels or glomerular filtration rate [5]; (4) prolonged
ventilation or reintubation—more than 24 hours; (5)
mediastinitis/deep sternal wound infection (DSWI)
occurring during the index hospitalization or within 30
days of operation; (6) reoperation for bleeding, tampo-
nade, or any cardiac reason; (7) major morbidity or
mortality—a composite defined as the occurrence of any
one or more of the above endpoints; (8) prolonged post-
operative length of stay (PLOS)—PLOS more than 14
days (alive or dead); and (9) short PLOS, defined as PLOS
less than 6 days and patient alive at discharge. The
follow-up period for endpoint definitions was from
operation until the latter of hospital discharge or 30 days
for mortality and DSWI and until hospital discharge for
all other endpoints.
Endpoints with notable definition changes compared

with the STS 2008 models included stroke (changed
duration of symptoms from more than 72 hours to more
than 24 hours), reoperation (changed from any reason to
any cardiac reason), DSWI (added mediastinitis and
included both inhospital and 30-day timeframe), and
renal failure (definition changed to more closely align
with RIFLE criteria [5]).

Study Cohort
Models were developed and evaluated using data from
July 1, 2011, to December 31, 2016, and were limited to the
three major procedure populations that have been
designated for outcomes reporting in the STS participant
feedback report: (1) isolated CABG; (2) isolated valve; and
(3) valve plus CABG. Data collected under STS version
2.73 (July 1, 2011, to June 30, 2014) were used to develop
the models and perform a preliminary internal assess-
ment of discrimination and calibration. Data collected
under STS version 2.81 (July 1, 2014, to December 31,
2016) were used to assess model performance in a sepa-
rate patient sample.
The valve cohort includes operations for aortic valve

replacement (AVR), mitral valve replacement (MVR), and
mitral valve repair (MVr). The valve plus CABG popula-
tion includes AVR plus CABG, MVR plus CABG, and
MVr plus CABG. Definitions of these populations are
provided in the Supplemental Material. Briefly, each
operation type includes patients undergoing a stand-
alone operation and excludes planned major concomi-
tant operations with a few exceptions, most notably, that
concomitant tricuspid valve repair, surgical ablation for
atrial fibrillation, or repair of atrial septal defect are
allowed concomitantly with MVR or MVr in the valve and
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valve plus CABG populations. Patients on dialysis pre-
operatively were excluded from models predicting new-
onset postoperative renal failure.

Among 1,556,593 records for patients aged 18 to 110
years undergoing a cardiac operation at a participating
site in the United States or Canada during the study
period, 1,250,165 (80%) records met criteria for one of the
three major procedure populations (Table 1) and were
included in the development cohort (n ¼ 670,830) or
validation cohort (579,335).

Risk Models
For each endpoint except DSWI, separate risk models
were developed for each major procedure population
(8 endpoints � 3 populations ¼ 24 risk models). For
DSWI, the low number of endpoint events in the valve
(n ¼ 244) and valve plus CABG (n ¼ 285) populations
prompted concern that models in these populations may
prove to be inaccurate because of overfitting the data. To
mitigate overfitting, we developed a single DSWI model
combining all three procedure populations. The DSWI
models used indicator variables to adjust for operation
type (eg, AVR, MVr, MVR, and so forth) and included
interaction terms to account for the importance of
selected risk factors that differ across these operation
types.

Selection of Candidate Predictor Variables
The 2018 STS risk models were developed using data
from version 2.73, but these models will be applied to
patients entered into the STS ACSD using versions 2.81
and later. Accordingly, to be an acceptable candidate
variable, it was necessary to assure that the variable was
present in version 2.73 and in version 2.81 (or a similar,
mappable analogue in the latter). Because the main goal
of the models is to adjust for case mix, only preprocedural
patient variables were considered for inclusion.

To begin the selection process, each surgeon member
of the working group (n ¼ 10) independently reviewed a
list of 187 potentially relevant preprocedure factors from
Table 1. Sample Sizes for Model Development and Evaluation

Procedure Developmenta Validationb

Overall 670,830 579,335
CABG 439,092 385,179
Valve 150,150 129,511

AVR 87,629 72,719
MVR 26,850 25,888
MVr 35,671 30,904

ValveþCABG 81,588 64,645
AVRþCABG 55,064 43,822
MVRþCABG 9,227 8,737
MVrþCABG 17,297 12,086

a July 2011 to June 2014. b July 2014 to December 2016.

AVR ¼ aortic valve replacement; CABG ¼ coronary artery bypass
grafting surgery; MVR ¼ mitral valve replacement; MVr ¼ mitral
valve repair.
the v2.73 data collection form and used an online ques-
tionnaire to rate his or her a priori assessment of each
variable’s prognostic potential. Variables identified as
potential risk factors by at least four of the 10 surgeons
were retained for further consideration and were dis-
cussed in detail in a series of conference calls. To facilitate
this discussion, each variable’s frequency distribution
and percentage of missing data were tabulated overall
and across operation types.
Missing data frequency was less than 1% for the

majority of preprocedural variables. Those few variables
with missing data rates greater than 5%, or variables
associated with a test or study that had not been per-
formed in more than 5% of the relevant study population,
were also excluded. Specific examples of excluded vari-
ables are described in Part 1 of this report [4].
Considerations regarding adjustment of outcomes

measures for socioeconomic status or sociodemographic
factors (eg, race, ethnicity, education, income, payer [eg,
Medicare-Medicaid dual eligible status]) are discussed in
detail in Part 1 of this report [4]. In general, we based our
modeling decisions on principles from epidemiology and
causal inference, evaluating those available socioeco-
nomic status or sociodemographic risk factors potentially
having an empirical association with outcomes and rele-
vant to case-mix adjustment, while avoiding more phil-
osophical considerations.
Surgery date was included as a candidate predictor to

adjust for temporal trends in endpoint occurrence rates
and detection rates across the 3-year development period.
Risk calculators implementing these models will account
for time trends by predicting risk standardized to a
January 1, 2014, surgery date.

Simulations to Assess Statistical Precision
and Overfitting
When the number of predictors in a model is too large in
relation to the available sample size, the estimated nu-
merical coefficients are likely to be inaccurate because of
overfitting the current study data [6]. Using a data-driven
variable selection procedure can reduce the number of
predictors in a model but may not mitigate overfitting
because each predictor tested for inclusion in the model
has the potential to be selected because of overfitting [7].
To assess the potential statistical accuracy of risk

models based on this project’s available sample size and
candidate risk factors, a simulation study was conducted.
This involved creating 200 bootstrap samples by sampling
records with replacement from the overall development
sample and using each bootstrap sample to estimate two
models for each combination of model population and
endpoint, based on the surgeon panel’s proposed list of
candidate predictors. The first model included the entire
set of proposed candidate predictor variables, a so-called
full model. The second model started with the same set of
predictors but applied backward selection with a signifi-
cance threshold of 0.05. Regression coefficients from each
bootstrap sample were then used to calculate predicted
risk estimates for each patient in the overall development
sample. Ideally, in a setting of high statistical precision,
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the predicted risk estimate for the same patient and
endpoint should not vary depending on which bootstrap
sample was used to estimate regression coefficients.

To quantify estimation error, we estimated the average
Pearson correlation between risk estimates for the same
patient across all possible pairs of bootstrap samples.
This was done separately for each combination of popu-
lation (CABG, valve, valve plus CABG), endpoint, and
modeling strategy (all predictors, backward selection).
Results indicated that predicted risk estimates were
generally stable with Pearson correlation coefficients
greater than 0.90 for most population and endpoints
combinations whether retaining all predictors or using
backward selection.

Models with low consistency across bootstrap samples
were those with relatively few endpoint events, including
stroke in the valve and valve plus CABG populations
(correlations 0.58 to 0.69) and DSWI in the valve and valve
plus CABG populations (correlations 0.25 to 0.41). These
findings led the model committee to consider both pre-
dictive accuracy and parsimony in the final selection of
candidate predictors and to estimate a single combined
model for DSWI, instead of separate DSWI models for
each procedure population, as mentioned previously.

Optimal Coding of Candidate Covariates
We attempted to achieve the most computationally effi-
cient and clinically relevant coding, or parameterization,
of candidate variables. That typically involved collapsing
or combining clinically related or collinear variables, and
was particularly important in cases where multiple STS
variables relate to a single underlying clinical concept, for
example, insurance status (12 variables), previous cardiac
interventions (31 STS variables), and preoperative
arrhythmias (7 STS variables). In some instances, un-
common but important variables were combined with
other related variables (eg, catheter-based assist devices
and extracorporeal membrane oxygenation were com-
bined with shock, their usual indication).

For some variables, informal exploratory analyses us-
ing STS data from an earlier period (2007 to 2011) helped
to determine the optimal modeling strategy. For example,
we used data from 2007 to 2011 to explore how best to
model body mass index (BMI) and body surface
area (BSA) given that both variables describe aspects of a
patient’s body habitus and are highly correlated. For
these investigations, we initially estimated a multivariable
model for mortality that did not adjust for BSA or BMI but
included all other preoperative factors from the published
STS 2008 mortality model. After fitting this model to data
from 2007 to 2011, we then compared observed versus
predicted mortality rates across subgroups defined by
categorizations of BSA and BMI as well as sex. The
observed pattern of residuals indicated that BSA and BMI
were both independently associated with mortality and
that inclusion of both variables was needed to capture
variation in the residuals. When the model was reesti-
mated after including BSA but not BMI, the pattern of
residuals indicated a U-shape relationship between BMI
and mortality, leading to the inclusion of both linear and
quadratic terms for BMI. We investigated the following
approaches for BSA and BMI: BSA linear; BSA quadratic;
interaction between BSA and sex; BMI linear; BMI
quadratic; and BMI alternatives. In some instances,
extreme values were truncated (eg, BMI values greater
than 50 were mapped to 50).
Similar analyses were conducted to explore modeling

issues for insurance status, race, myocardial infarction
history, and history of prior procedures, and to explore
the functional form of various other continuous variables.

Selection of Final Covariates
After choosing the list of candidate covariates, the final
set of covariates for each model were selected. For each
combination of population and endpoint, we estimated a
full model that included all candidate covariates and a set
of reduced models that were chosen by backward vari-
able selection. To estimate the optimal significance level
for backward selection, we repeated the backward selec-
tion process using five different significance levels
(0.0001, 0.001, 0.01, 0.05, and 0.1) and estimated perfor-
mance metrics for the resulting models. The goal of this
analysis was to select the optimum significance level to
use for each combination of population and endpoint.
Because of overfitting the data, model performance is
likely to be overestimated when models are developed
and naively tested in the same sample of data. To obtain
approximately unbiased performance estimates, each full
model and the backward selection process was repeated
in 200 bootstrap samples drawn with replacement from
the original development sample.
To assess overfitting, we applied estimated regression

coefficients from the bootstrap sample to patients in
the overall development sample and then entered each
patient’s calculated risk score (log-odds) into a uni-
variable logistic regression model predicting the
endpoint. The slope coefficient for the risk score in this
model was interpreted as a measure of overfitting, with
a slope of 1.0 indicating perfect calibration and a slope
less than 1 indicating possible overfitting [6]. Discrimi-
nation was assessed by calculating the c-statistic
(the area under the receiver-operating characteristics
curve) and using a bootstrap adjustment to correct for
optimism [7].
To assess calibration, the backward selection process

was subsequently repeated using ninefold cross valida-
tion. For each cross-validation replicate, models were
developed in an 8/9 training sample and evaluated for
calibration in a 1/9 testing sample. Calibration was
assessed graphically by plotting observed versus ex-
pected endpoint event rates across deciles of predicted
risk among patients in each testing sample. That was
done for the full model and for each significance level
when using backward selection. The main objective of
this exercise was to determine whether there were
compelling statistical differences between significance
levels to support one particular choice.
In the absence of compelling statistical differences be-

tween the performance of various models, the final model
was chosen by surgeon members of the working group, as
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described in Part 1 of this report [4]. Beginning with the
full model, surgeons carefully reviewed the predictors in
each model (full, and using backward selection criteria
p ¼ 0.1, 0.05, 0.01, 0.001, and 0.0001). Each progressively
more parsimonious model was evaluated to be certain
that no variables had been eliminated that would jeop-
ardize clinical face validity. Generally, the most statisti-
cally parsimonious model that did not compromise
clinical face validity was chosen as the final model.
Missing Data and Imputation Strategies
Covariate data were missing in fewer than 5% of cases in
each procedure population for all but one candidate co-
variate (aortic root abscess in AVR and AVR plus CABG;
missing ¼ 13%). Overall, 15% of records had missing or
unknown mortality data for at least one component of the
operative mortality definition. Rates of missing or un-
known data were 0.06% for discharge mortality status and
15.0% for 30-day mortality status. Previous linkage of the
STS ACSD to the Social Security Death Master File [8]
reveals that capture of 30-day deaths occurring before
discharge is highly accurate, and that these inhospital
deaths represent the majority (79%) of all 30-day deaths.
Capture of the remaining 30-day deaths occurring after
discharge was less complete and warranted improve-
ment. Consequently, in 2016, the STS implemented more
stringent requirements for all data fields related to
operative mortality. As of January 1, 2016, participants
were not included in the benchmark population for STS
performance metrics, nor were these participants eligible
to receive an STS star rating unless their rate of missing
data for 30-day mortality and discharge mortality was less
than 5% missing or unknown; in January 2017 this
threshold was further decreased to 2%.

Missing data rates for endpoints other than mortality
were less than 0.25%. For initial exploratory and variable
Table 2. Percentage and Number of Endpoint Events by Model Po

Endpoint Events All (n ¼ 670,830) CABG (n

Operative mortality 2.9%
16,792/569,998

2.
8,852/

Stroke 1.5%
9,866/669,561

1.
5,621/

Renal failure 2.7%
17,202/648,808

2.
9,381/

Prolonged ventilation 10.9%
72,984/670,830

9.
40,974/

Reoperation 3.1%
20,872/670,778

2.
10,327/

Composite morbidity and mortality 17.4%
101,180/581,976

15
56,984/

Prolonged PLOS 6.6%
44,533/670,428

5.
22,091/

Short PLOS 42.7%
286,362/670,428

48
211,820

DSWI 0.3%
1,875/669,392

0.
1,346/

CABG ¼ coronary artery bypass grafting surgery; DSWI ¼ mediastinitis/d
selection analyses, missing covariate and endpoint values
were handled using a simple single imputation strategy.
Values were imputed to the most common category of
binary or categorical variables and to the median or
subgroup-specific median of continuous variables. This
single imputation strategy was previously validated for the
2008STSriskmodelsbydemonstrating that coefficientsand
predicted risk estimates obtained using single imputation
were similar to the gold standard ofmultiple imputation [1].
After finalizing the selection of model covariates, as

described above, regression coefficients were subse-
quently reestimated using a multiple imputation strategy
for covariates with more than 5% missing data and for all
endpoints. The principle motivation for using multiple
imputation was to make efficient use of data from the
discharge mortality status field when imputing operative
mortality status among patients who were discharged
alive. Multiple imputation was implemented using the
method of chained equations as implemented in the SAS
software (SAS Institute, Cary, NC) PROC MI procedure
with the full conditional specification option [9, 10]. To
avoid bias due to perfect prediction [11], separate impu-
tation models were estimated for discharge deaths and
discharge survivors. To speed computation and resolve
convergence errors, covariates with less than 5% missing
data were imputed by single imputation before esti-
mating the multiple imputation model.
Final Model Assessment
The validation sample was created by applying the study’s
inclusion criteria to STS data for the period July 1, 2014, to
December 31, 2016, as the goal was to assess model per-
formance in future data. Data from hospitals with more
than 5% missing data for an endpoint within a procedure
populationwere excluded fromvalidation analyses for that
population and endpoint. Discrimination was quantified
pulation in Development Sample

¼ 439,092) Valve (n ¼ 150,150) Valve þ CABG (n ¼ 81,588)

4%
373,683

3.2%
4,004/126,204

5.6%
3,936/70,111

3%
438,385

1.5%
2,237/149,800

2.5%
2,008/81,376

2%
424,888

2.7%
3,868/145,454

5.0%
3,953/78,466

3%
439,092

11.1%
16,604/150,150

18.9%
15,406/81,588

4%
439,060

4.2%
6,371/150,137

5.1%
4,174/81,581

.0%
380,491

18.4%
23,724/129,140

28.3%
20,472/72,345

0%
438,867

8.0%
11,941/150,024

12.9%
10,501/81,537

.3%
/438,867

37.4%
56,130/150,024

22.6%
18,412/81,537

3%
438,270

0.2%
244/149,778

0.4%
285/81,344

eep sternal wound infection; PLOS ¼ postoperative length of stay.



Table 3. Candidate Predictors

Operation type
Age
Ejection fraction
Body mass index
Body surface area
Sex
Renal function (dialysis/creatinine)
Hematocrit
White blood cell count
Platelet count
ADP receptor inhibitor usage/timing of discontinuation
Hypertension
Immunosuppressive therapy within 30 days
Steroids within 24 hours
Glycoprotein IIb/IIIa inhibitor within 24 hours
Inotropes within 48 hours
Preoperative IABP
Shock/ECMO/CBA
PAD
Left main disease
Proximal LAD
Aortic root abscess in AVR/AVRþCABG
Mitral stenosis
Aortic stenosis
Mitral insufficiency
Tricuspid insufficiency
Aortic insufficiency
Arrhythmia and type
Endocarditis
Chronic lung disease
CVD/CVA/TIA
Carotid stenosis
Previous carotid surgery

Illicit drug use
Alcohol consumption (drinks per week)
Recent pneumonia
Mediastinal radiation
Cancer diagnosis within 5 years
Diabetes/diabetes control method
Number of diseased vessels
Myocardial infarction history/timing
Cardiac presentation on admission
Race/ethnicity
Status
ACE/ARB inhibitor within 48 hours in nonelective operation
Heart failure class and timing
Recent smoker/timing
Family history of CAD
Home oxygen
Sleep apnea
Liver disease
Unresponsive neurologic status
Syncope
Previous CABG
Previous aortic valve procedure
Previous mitral valve procedure
Previous transcatheter valve replacement/percutaneous valve repair
Previous other valve procedure
Number of previous cardiovascular surgeries
Previous ICD
PCI history/timing
Previous any other cardiac intervention
Payer/insurance type
Tricuspid valve repair performed concomitantly
Time trend (surgery date)

ACE ¼ angiotensin-converting enzyme; ADP ¼ adenosine diphosphate; ARB ¼ angiotensin-receptor blocker; AVR ¼ aortic valve replace-
ment; CABG¼ coronary artery bypass grafting surgery; CAD¼ coronary artery disease; CBA¼ catheterization-based assist device; CVA¼
cerebrovascular accident; CVD ¼ cardiovascular disease; ECMO ¼ extracorporeal membrane oxygenation; IABP ¼ intraaortic balloon
pump; ICD ¼ implantable cardioverter-defibrillator; LAD ¼ left anterior descending artery; PAD ¼ peripheral arterial disease; PCI ¼
percutaneous coronary intervention; TIA ¼ transient ischemic attack.
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by the c-statistic. To provide context for interpreting
discrimination results, c-statistics were calculated in the
validation sample for both the current STS 2018 models
and the prior STS 2008 models. Calibration was assessed
by plotting observed versus expected event rates across
deciles of predicted risk in the validation sample.
Table 4. C-statistics in Validation Sample for 2008 STS Risk Mod

Endpoint

CABG

STS 2008
Models

STS 2018
Models

Operative mortality 0.791 0.804
Stroke 0.682 0.697
Renal failure 0.801 0.826
Prolonged ventilation 0.756 0.772
Reoperation 0.600 0.621
Composite morbidity and

mortality
0.725 0.738

Prolonged PLOS 0.761 0.777
Short PLOS 0.707 0.716
DSWI 0.665 0.681

CABG ¼ coronary artery bypass grafting surgery; DSWI ¼ mediastinitis/de
STS ¼ The Society of Thoracic Surgeons.
Results

A total of 670,830 records met study inclusion criteria and
were included in the development samples for CABG
(n ¼ 439,092), valve (n ¼ 150,150), and valve plus CABG
(n ¼ 81,588). The number of endpoint events in the
development sample ranged from 1,875 for DSWI to
els and Current 2018 Risk Models

Valve Valve þ CABG

STS 2008
Models

STS 2018
Models

STS 2008
Models

STS 2018
Models

0.760 0.775 0.753 0.761
0.669 0.656 0.631 0.632
0.770 0.787 0.746 0.759
0.761 0.777 0.731 0.744
0.604 0.616 0.577 0.588
0.712 0.723 0.702 0.712

0.778 0.796 0.726 0.739
0.723 0.732 0.716 0.726
0.592 0.665 0.648 0.659

ep sternal wound infection; PLOS ¼ postoperative length of stay;
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286,362 for short PLOS (Table 2). As discussed above,
the relatively small number of DSWI endpoints in valve
(n ¼ 244) and valve plus CABG (n ¼ 285) populations
raised concerns about potential overfitting in these pop-
ulations, and that led to a decision to estimate a single
combined model for DSWI. For the other eight end-
points, the number of occurrences ranged from 2,008 for
stroke in valve plus CABG to 211,820 for short PLOS in
CABG.

Table 3 summarizes the final list of candidate cova-
riates. These 65 variables were included in the "full"
model for each endpoint and population and were the
starting point for variable selection by backward selection
with bootstrapping and cross validation, and subsequent
clinical assessment by the surgeon panel. Details of how
each candidate variable was parameterized in the model
Fig 1. Calibration for major endpoints in the validation sample: coronary a
are provided in the Supplemental Material. After inclu-
sion of nonlinear, categorical, and interaction terms, the
number of model parameters in the full model was 122
for CABG, 218 for valve, and 215 for valve plus CABG.
The number of endpoint events per parameter in the full
model ranged from 9 in the stroke model for valve plus
CABG to 1,736 in the short PLOS model for CABG.
Supplemental Tables 1 to 4 in the Supplemental

Material summarize risk factors in the final selected
model for each population and endpoint. The number of
risk factors in these models ranged from 25 in the model
for stroke in valve plus CABG to 50 in the models for
composite mortality or major morbidity and short PLOS
in CABG. Full specifications for these models including
formulas, coefficients, and intercept parameters will be
publicly available from the STS website.
rtery bypass grafting surgery. (PLOS ¼ postoperative length of stay.)
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Performance of the final models in the development
sample was excellent for most of the population and
endpoint combinations (Supplemental Material,
Supplemental Tables 5, 6). Across the three model pop-
ulations, the bootstrap-adjusted c-statistics were lowest
for reoperation (range, 0.574 to 0.627) followed by stroke
(range, 0.616 to 0.704) and were highest for renal failure
(range, 0.749 to 0.810). Slopes to assess overfitting were
generally close to the ideal value of 1.0 and were greater
than 0.90 for all but three population-endpoint combi-
nations. Models with slopes less than 0.90 were reoper-
ation in valve (0.88), reoperation in valve plus CABG
(0.78), and stroke in valve plus CABG (0.79). Calibration
plots based on cross validation revealed acceptable cali-
bration and no obvious violation of modeling
assumptions.
Fig 2. Calibration for major endpoints in the validation sample: valve. (PL
After selecting the final set of models, regression co-
efficients were subsequently reestimated using multiple
imputation to deal with missing endpoint data. After
multiple imputation, the average predicted mortality risk
across all populations increased from 2.50% to 2.58%
(relative increase ¼ 3%).
The c-statistics in the validation sample ranged from

0.588 for reoperation in valve plus CABG to 0.826 for renal
failure in CABG. Table 4 presents c-statistics calculated in
the validation sample for the final selected models and
compares them with c-statistics calculated in the valida-
tion sample for the prior STS 2008 risk models. Although
the DSWI model was estimated in a combined cohort that
included all three procedure populations, its discrimina-
tion was assessed in each procedure population individ-
ually in Table 4. The c-statistics of the new STS models
OS ¼ postoperative length of stay.)



Fig 3. Calibration for major endpoints in the validation sample: valve plus coronary artery bypass grafting surgery. (PLOS ¼ postoperative length
of stay.)
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exceeded those of the STS 2008 models for all populations
and endpoints except for the valve model for stroke; all
but two of the p values were less than 0.05 (stroke and
DSWI in valve plus CABG) andmost were less than 0.0001
(Supplemental Table 7).

Calibration graphs in the validation sample are pre-
sented in Figures 1, 2, and 3. These reveal excellent
calibration for the vast majority of populations and end-
points. The DSWI model appears to systematically
underestimate infection risk in CABG by a factor of
approximately 0.80, presumably because of a somewhat
higher rate of this complication in more recent data. This
underestimation of risk will be corrected when these
models are used to calculate observed to expected ratios in
the STS feedback reports; the report methodology applies
a calibration factor that causes the expected rate to equal
the observed rate within each calendar year of the
reporting period. After applying the STS feedback report
recalibration methodology to the validation sample, the
calibration of the recalibrated DSWI model was excellent,
as shown in Supplemental Figure 1. When these models
are used to calculate STS composite scores, deteriorating
calibration over time will be corrected automatically
because model coefficients will be reestimated in the cur-
rent STS data before composite scores are calculated.
Comment

We have described the development and validation of a
comprehensive set of new STS adult cardiac surgical risk
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models that will be used to adjust for case mix in the STS
participant feedback report and the STS voluntary public
reporting program. Our approach to model development
incorporated several novel features including the use of
simulations to assess the feasible number of predictors in
relation to sample size, and the combined use of boot-
strapping and cross validation to estimatemodel operating
characteristics as a function of the significance level for
variable inclusion. Because the main intended use of these
models was case-mix adjustment, we did not focus on
parsimony (small number of covariates) as our primary
goal but rather selected the optimal covariates for accurate
risk prediction using a combination of statistical and clin-
ical face validity approaches. The models showed good
calibration, and 24 of 25 models had superior discrimina-
tion compared with the STS 2008 models when evaluated
in the contemporary dataset used for model validation.
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